• B.L. DeCost, T. Francis, & E.A. Holm, High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel [arXiv:1805.08693] [supplemental (50MB PDF)] [dataset]

  • A. Mangal & E. A. Holm. A comparative study of feature selection methods for stress hotspot classification in materials. accepted in Integrating Materials and Manufacturing Innovation, 2018 [arXiv:1804.09604]

  • A. Mangal & E.A. Holm Applied Machine Learning to Predict Stress Hotspots II: Hexagonal close packed materials [arXiv:1804.05924]

  • I. Chesser & E.A Holm Understanding the anomalous thermal behavior of sigma 3 grain boundaries in a variety of FCC metals [arXiv:1803.02689]

  • A. Mangal & E.A. Holm Applied Machine Learning to predict stress hotspots I: Face Centered Cubic Materials [arXiv:1711.00118]

  • J. Humberson & E.A. Holm, The structure and motion of incoherent \(\Sigma3\) grain boundaries in FCC metals Submitted to Acta Mater.

Recent papers at CMU


  • B.L. DeCost, T. Francis, & E.A. Holm, Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 10.1016/j.actamat.2017.05.014 [preprint]

  • B.L. DeCost, M.D. Hecht, T. Francis, B.A. Webler, Y.N. Picard, & E.A. Holm, UHCSDB (UltraHigh Carbon Steel micrograph DataBase): tools for exploring large heterogeneous microstructure datasets IMMI 10.1007/s40192-017-0097-0 [preprint]

  • J. Humberson & E.A. Holm, Antithermal mobility in the \(\Sigma3 [111]\) \(60^\circ\) \((11 \; 8 \; 5)\) grain boundary in nickel: Mechanism and computational considerations. Scripta Mater. 2017 10.1016/j.scriptamat.2016.10.032

  • B. L. DeCost, H. Jain, A.D. Rollett, & E.A. Holm Computer vision and machine learning for autonomous characterization of AM powder feedstocks. JOM (Mar. 2017), pp. 1–10. 10.1007/s11837-016-2226-1

  • B. L. DeCost and E. A. Holm. Characterizing powder materials using keypoint-based computer vision methods Comp. Mater. Sci. 126 (Jan. 2017), pp. 438– 445. 10.1016/j.commatsci.2016.08.038


  • P. Goins & E.A. Holm, The Material Point Monte Carlo model: A discrete, off-lattice method for microstructural evolution simulations. Comp. Mater. Sci. Editors Choice 2016 10.1016/j.commatsci.2016.08.017

  • B. L. DeCost and E. A. Holm. Phenomenology of abnormal grain growth in systems with non-uniform grain boundary mobility. Metall. and Mater. Trans. A (2016). 10.1007/s11661-016-3673-6


  • B. L. DeCost and E. A. Holm. A computer vision approach for automated analysis and classification of microstructural image data. Comp. Mater. Sci. 110 (2015), pp. 126–133. 10.1016/j.commatsci.2015.08.011

Data publications

  • B. L. DeCost and E. A. Holm. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures. Data in Brief 9 (Dec. 2016), pp. 727–731. 10.1016/j.dib.2016.10.011

Additional Selected publications


  • S. Ratanaphan, D. L. Olmsted, V. V. Bulatov, E. A. Holm, A. D. Rollett, G. S. Rohrer, Grain boundary energies in body-centered cubic materials. Acta Mater. 88 346-354 (2015).


  • N. A. Pedrazas, T. E. Buchheit, E. A. Holm, E. M. Taleff, Dynamic Abnormal Grain Growth in Tantalum. Mat. Sci. Engin. A 610 76084 (2014).

  • E. R. Homer, E. A. Holm, S. M. Foiles, D. L. Olmsted, Trends in Grain Boundary Mobility: Survey of Motion Mechanisms. JOM 66[1] 114-120 (2014).


  • E. R. Homer, V. Tikare, E. A. Holm, Hybrid Potts-Phase Field Model for Coupled Microstructural-Compositional Evolution. Computational Materials Science 69 414-423 (2013).

  • E. R. Homer, S. M. Foiles, E. A. Holm, D. L. Olmsted, Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries. Acta Mater. 61 1048-1060 (2013).


  • C. R. Weinberger, C. C. Battaile, T. E. Buchheit, E. A. Holm, Incorporating atomistic models of lattice friction into BCC crystal plasticity models. Int. J. Plasticity 37[10] 16-30 (2012).

  • J. D. Madison, V. Tikare, E. A. Holm, A hybrid simulation methodology for modeling dynamic recrystallization in UO2 LWR nuclear fuels J. Nuc. Mater. 425[1-3] 173-180 (2012). 10.1016/j.jnucmat.2011.10.023


  • T. E. Buchheit, C. C. Battaile, C. R. Weinberger, E. A. Holm, Multiscale modeling of low temperature deformation in BCC metals (Invited) JOM 63[11] 33-36 (2011).

  • S. Wang, E. A. Holm, J. Suni, M. H. Alvi, P. N. Kalu, A. D. Rollett, Recrystallized grain size in single phase materials. Acta Mater. 59[10] 3872-3882 (2011). 10.1016/j.actamat.2011.03.011

  • E. A. Holm, G. S. Rohrer, S. M. Foiles, A. D. Rollett, H. Miller, D. Olmsted, Validating computed grain boundary energies in FCC metals using the grain boundary character distribution. Acta Mater. 59 5250-5256 (2011).


  • E. A. Holm and S. M. Foiles, How Grain Growth Stops: A mechanism for grain growth stagnation in pure materials. Science 328 1138-1141 (2010) 10.1126/science.1187833


  • D. Olmsted, S. M. Foiles, E. A. Holm, Survey of grain boundary properties in FCC metals: I. Grain boundary energy. Acta Mater. 57 3694–3703 (2009).

  • D. Olmsted, E. A. Holm, S. M. Foiles, Survey of grain boundary properties in FCC metals: II. Grain boundary mobility. Acta Mater. 57 3704–3713 (2009).


  • K. G. F. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton and P. M. Derlet, Computing the Mobility of Grain Boundaries. Nature Materials 5[2] 124-127 (2006).


  • D. Basanta, M. A. Miodownik, E. A. Holm and P. J. Bentley, Using Genetic Algorithms to Evolve 3D Microstructures from 2D Micrographs Metall. Mater. Trans. A 36A[7] 1643-1652 (2005).

  • E. S. McGarrity, P. M. Duxbury, and E. A. Holm, Statistical physics of grain boundary engineering. Phys. Rev. E 71[2] 026102 (2005).


  • M. A. Miodownik, P. Smereka, E. A. Holm, and D. J. Srolovitz, Scaling of Dislocation Cell Structures: Diffusion in Orientation Space. Proc. Roy. Soc. Lond. A457 1807-1819 (2001).


  • E. A. Holm and G. N. McGovney, Network Algorithms for Minimum Energy Fracture Surfaces. Advances in Computational Engineering and Sciences, S. N. Atluri and F. W. Brust (editors) (Tech Science Press, Palmdale, CA, 2000) pp. 1784-1789.