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Abstract

We present a new microstructure dataset consisting of ultrahigh
carbon steel (UHCS) micrographs taken over a range of length scales
under systematically varied heat treatments. Using the UHCS dataset
as a case study, we develop a set of visualization tools for interacting
with and exploring large microstructure and metadata datasets. Based
on generic microstructure representations adapted from the field of
computer vision, these tools enable image-based microstructure retrieval,
as well as spatial maps of both microstructure and related metadata,
such as processing conditions or properties measurements. We provide
the microstructure image data, processing metadata, and source code for
these microstructure exploration tools. The UHCS dataset is intended as
a community resource for development and evaluation of microstructure
data science techniques, and for creation of microstructure data science
teaching modules.

1 Introduction

We introduce a microstructure dataset[1] focusing on complex, hierarchical
structures found in a single ultrahigh carbon steel (UHCS) alloy under a
range of heat treatments performed by Hecht et al. [2, 3]. In a concurrent
report, we use this dataset to evaluate several microstructure representations
based on contemporary computer vision research, and discuss application of
both supervised and unsupervised machine learning methods to yield insight
into microstructure–properties relationships [4].
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This document describes the contents of the UHCS dataset [1] in detail,
and outlines the data visualization tools we developed for exploring mi-
crostructure datasets with processing and/or properties metadata. We reflect
on our experience using a simple SQL database to manage microstructure
and processing metadata instead of choosing one of the emerging mate-
rials data standards. We also present a responsive web application with
microstructure-query and metadata visualization tools, currently accessible
online at http://uhcsdb.materials.cmu.edu [5].

The UHCS microstructure and metadata dataset can be used by the
materials community to define benchmark microstructure data science tasks,
such as microstructure classification, microstructure clustering, and devel-
oping data-driven microstructure models for processing-structure-properties
relationships. The dataset can also support the development and evaluation
of new data-driven microstructure representations that address changes in
physical scale, magnification, and sample orientation. Finally, the microstruc-
ture data visualization tools we present can be reused and extended to enable
exploratory analysis of large microstructure datasets.

2 Materials and Methods

The Ultrahigh Carbon Steel (UHCS) dataset consists of scanning electron
micrographs (SEM) collected to study the effects of a series of heat treatments
on the microstructure features responsible for the hardness and toughness
of UHCS [2, 3]. Specimens came from a commercial roll-mill casting with a
nominal carbon content of 2%, with detailed composition shown in Table 1.
The specimens were annealed at temperatures ranging from 700 ◦C to 1100
◦C for durations ranging from 5 minutes to 85 hours before quenching, as
shown in Tables 2, 3 and 4. The quantity column indicates the number
micrographs in the dataset processed at the corresponding condition. Most
of the microstructures in this dataset are the result of annealing at 970 ◦C
and at 800 ◦C, between the eutectoid temperature of 723 ◦C and the melting
temperature of around 1150 ◦C for ultra high carbon steels. Specimens were
water quenched or cooled more slowly in air or in the furnace, as indicated in
Table 2. Most specimens for which annealing metadata are unavailable are
in the as-cast pearlitic microstructure state.

Figure 1 shows one example micrograph each for the primary microcon-
stituents found in the UHCSDB. These microconstituents include (a) pearlite
typical of the as-cast material, (b) the proeutectoid cementite network char-
acteristic of ultra-high carbon steels, (c) spheroidite, (d) pearlite containing
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Table 1: Nominal as-cast composition of the present UHCS alloy.

C Si Mn Cr Ni Mo
2.02 0.65 0.72 3.86 1.45 0.33

Table 2: Listing of quench methods.

quench method description quantity
AR air cooled 20
FC furnace cooled 73
Q quench 489
650 1H 650 ◦ C for 1 hour 16
N/A mostly as-cast 363
total 961

spheroidite, (e) Widmanstätten cementite, and (f) martensite. Heat treated
material was polished with 0.04 µm alumina and etched in 4-5% Nital for 30
seconds before image acquisition in a Philips XL-30 SEM at an accelerating
voltage of 20kV. Most of these micrographs were collected using secondary
electron imaging, though some backscattered electron images appear in the
dataset.

The microscope used to collect these micrographs did not export any
imaging metadata in a machine-readable format. Because the same SEM
happened to be used for each image, the human-readable metadata accompa-
nying the micron bar at the bottom of each image was laid out consistently
(refer to Figure 1(a)–(f)). As a result, we were able to use a semi-automated

Table 3: Annealing temperatures in ◦C.

annealing temperature quantity
700 11
750 4
800 149
900 60
970 344

1000 14
1100 16
N/A 363
total 961
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Table 4: Annealing times in minutes (M) and hours (H).

annealing time quantity
5M 89
1H 16
90M 173
3H 100
8H 69
24H 115
48H 5
85H 31
N/A 363
total 961

approach to recover some imaging metadata, including the magnification,
imaging mode, and most importantly the physical scale of each image in
microns per pixel. In this dataset, the micron bars consistently have the
highest aspect ratio out of any of the white elements on the black metadata
panel, making it trivial to obtain their length in pixels. We extracted the
textual metadata using tesseract OCR [6], an open source optical charac-
ter recognition system. Because each text metadata field has a consistent
bounding box, we can crop the corresponding image patch from the metadata
panel and pass it to tesseract to obtain each metadata field as a string of
characters.

Due to the wide variety of formats used for micron bars, this sort of
automated metadata recovery is not possible in general for microstructure
datasets where the imaging metadata was not preserved. Additionally, reliably
using OCR to extract image metadata requires substantial tuning and review.
One common error we encountered was substitution of pm or um for scale
bar units shown in µm; in this instance, the number of unique results is
low enough to manually identify and programmatically correct each type
of erroneous reading. These factors highlight the need for ubiquitous and
standardized storage of imaging metadata at the point of collection.

3 Database structure.

Internally, we use a SQLite database to manage the microstructure metadata
and link it to raw image files and numerical microstructure representations.
Raw images are stored as plain png and tif files, and numerical microstructure
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(a) (b) (c)

(d) (e) (f)

Figure 1: Primary microstructure constituents in the UHCS dataset: (a)
pearlite, (b) proeutectoid cementite network microstructure, (c) spheroidized
cementite, (d) pearlite containing spheroidized cementite, (e) Widmanstätten
cementite, and (f) martensite and/or bainite.
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Figure 2: SQLite schema for UHCSDB.

representations are stored in a simple HDF5 format.
The structure of the UHCS dataset and its focus on microstructures

and their processing and imaging metadata suggests a simple division into
three tables, as illustrated in Figure 2. The User table contains identifying
information for individual researchers (e.g. ORCID) and the Sample table
contains metadata specific to a particular physical material specimen (e.g.
processing conditions relevant to all measurements taken from that spec-
imen, such as annealing time). The Micrograph table contains metadata
describing individual micrographs (e.g. a filesystem path to the image file;
a primary microconstituent label) and SQL relationships linking each mi-
crograph back to the corresponding Sample and User records. Finally, an
additional Collection table (not shown) can aggregate micrographs and
samples at the level of individual publications, research groups, or projects.
Collections might be associated with a DOI to facilitate citability, as well as
to link individual records to the definitive specification of their processing
and measurement history.

The relational structure of the metadata (where multiple micrographs
share the same processing metadata) make this organization a clear
choice over common text-based (comma-separated value, json) and bi-
nary (HDF5) formats for tabular data by reducing the complexity of
code written to query, manipulate, and update the data. The binary
data and UHCSDB web application URLs associated with the micro-
graph records in the SQLite database are organized using the integer pri-
mary keys for the Micrograph table (i.e. Micrograph.micrograph_id).
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For example, the Micrograph.path field stores a relative filesystem path
to the corresponding raw png or tif format microstructure image file
(micrograph1219.tif for a micrograph with a primary key of 1219). Sim-
ilarly, the URL http://uhcsdb.materials.cmu.edu/visual_query/1219
requests microstructure-based search results for micrograph 1219.

Additional binary data associated with each micrograph (e.g. reduced-
dimensionality microstructure representations) are stored in HDF5 format
indexed with the integer primary key from the corresponding record in
the Micrograph table. Microstructure representations from each method
described in [4] are stored in separate HDF5 files (one HDF5 file for each
method). Each vectorial microstructure representation is stored in a dataset
named with the corresponding primary key in the Micrograph table: the
feature vector for micrograph 1219 is stored in the HDF5 dataset /1219. The
reduced-dimensionality microstructure representations are stored in a similar
format, except that microstructure representations for each dimensionality
reduction technique are organized into HDF5 groups, so that the t-SNE
map point for micrograph 1219 is stored in the HDF5 dataset /t-SNE/1219.
Parameters specific to each dimensionality reduction algorithm are stored
as attributes to the top-level HDF5 group, including the implementation we
used (e.g. sklearn.decomposition.PCA for the scikit-learn implementation
of principal component analysis) to simplify reproducibility.

The main advantages of a SQL database over the more specialized emerg-
ing materials data formats are the simplicity, stability, and ubiquity of plain
SQL, and the surrounding ecosystem of related supporting libraries available
in many popular programming languages. Specifically, tools like the python li-
braries sqlalchemy and pandas allow users unfamiliar with database systems
to interact with the data by writing plain python code, instead of learning
a new database system or query language (e.g. SQL). For the binary data,
HDF5 carries the advantage of accessibility to multiple programming lan-
guages compared with e.g. matlab or numpy binary formats, and offers more
structure and performance compared with plain text formats. These factors
simplify the process of loading microstructure image data and processing
metadata for use with analytic and exploratory tools.

The most significant disadvantage of using a custom SQL schema is
its inflexibility. The SQLite schema presented in this section was designed
for expedience in organizing the data for the experiments presented in [4],
and will not generalize to new microstructure datasets with different sets of
processing and properties metadata. Moving forward, two general options
are available: commit to one of the emerging materials data formats (e.g.
Citrine’s PIF [7, 8] or Materials Commons [9]), or iteratively adapt custom
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organizations while mapping out the data and infrastructure requirements of
microstructure data science applications. As the microstructure community
converges on data standards and data infrastructure matures and stabilizes,
well-documented custom data formats can readily be converted into standard
formats and integrated into community repositories.

4 Tools for exploratory analysis of microstructure
datasets

The ability to concisely describe, evaluate, and synthesize large bodies of
microscopy work performed over an extended period of time in a collabora-
tive environment is a challenge of long-term, large-scale materials research
projects. Often, the institutional memory surrounding microstructure data
strongly depends on the humans involved. Even where data is stored digitally,
it is typically inaccessible for automated analysis, and it may be difficult for
humans to locate and discover specific pieces of data1. The global image
representations discussed in [4] support multiple novel tools of exploring mi-
crostructure datasets and scaling up collaborative research efforts by enabling
new means of interacting with and exploring microstructural image datasets.
High-dimensional nearest neighbor search can rank micrographs by some
measure of microstructural similarity (Section 4.1). Dimensionality reduction
algorithms can also be applied to display thumbnail images (Section 4.2) or
processing/properties metadata on a spatial microstructure map (Section 4.3).

We built a simple microstructure-oriented responsive web application
using open source tools, allowing users to interactively explore the UHCSDB
metadata and microstructure dataset via our microstructure dataset ex-
ploration tools. Such a web application can easily be deployed locally on
a personal machine or local network for internal use, or on the public in-
ternet via appropriate infrastructure (web server, hosting, domain name
registration, etc.). The UHCSDB web application is currently available at
http://uhcsdb.materials.cmu.edu. See Section 6 for details on accessing
the full microstructure dataset along with source code for the data visualiza-
tion tools.

4.1 Microstructure query tool

The primary interface of the UHCSDB web application is the microstructure
query tool which, given a micrograph, conducts a nearest neighbor search

1Datasets organized in collections of slide decks are commonplace.
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Figure 3: Screenshots from microstructure query tool.

for images in the dataset with similar microstructural content. The nearest
neighbor search can operate on any suitable microstructure representation;
here we use the multiscale convolutional neural network (CNN) representation
described in [4]. CNNs compose multiple layers (as many as one hundred
layers in some modern architectures) of convolution filters to extract highly
abstract image representations useful for a variety of visual, spatial, and
auditory tasks [10]. Our CNN representations are constructed from the
internal activations of a 13-layer CNN trained to perform an object recognition
task [4]. We combine activations from multiple scales in the input images
to obtain representations that are more robust with respect to changes in
magnification.

Figure 3 shows how the UHCSDB web application displays nearest neigh-
bor results with a brief summary of the available metadata for each micrograph.
Clicking on any of the image search results will initiate a new microstructure
query for similar micrographs to the selected search result. Users can surf
links between similar microstructure images to explore the full dataset, much
as a user of the internet might surf links between e.g. related Wikipedia
articles.
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4.2 Offline t-SNE image maps

High-dimensional microstructure representations enable us to train classifi-
cation models to map microstructure inputs to the primary microstructure
class labels, or to the annealing conditions [4]. However, humans have limited
ability to interpret these high-dimensional vectors, so we turn to dimension-
ality reduction techniques [11] to gain intuitive insights into microstructure
datasets by embedding the complex high-dimensional data into an easily
explorable 2D (or 3D) space. We use these low-dimensional microstructure
embeddings to create maps of microstructure image thumbnails, as shown
in Figure 4, which help address the problems of microstructure dataset
discoverability and summarization.

The dimensionality-reduction techniques commonly used in materials
data science (e.g. principal component analysis) sometimes fail to adequately
represent the structure of complex, noisy, and potentially nonlinear real-world
data distributions, such as the CNN representations for the present UHCS
micrographs. While we explored multiple dimensionality reduction techniques
(see Section 4.3), we found that t-SNE (stochastic neighbor embedding) [12]
consistently yields high quality data visualizations for the UHCS microstruc-
ture data. The t-SNE algorithm [12] yields a low-dimensional representation
by using a stochastic optimization procedure that attempts to conserve the
local neighborhood structure of the high-dimensional data, rather than the
global structure as in PCA. The ability of t-SNE to reveal local structure
in high-dimensional data comes at the cost of distorted depiction of larger
distances. t-SNE heavily penalizes large low-dimensional distances between
pairs of map points that have small high-dimensional distances, but effectively
ignores pairs of points with large high-dimensional distances. Thus large
distances between pairs of data points in the low-dimensional maps produced
by t-SNE carry little significance. Despite this compromise, t-SNE often pro-
vides interesting and visually useful depictions of real-world high-dimensional
datasets [12], often in settings where linear techniques break down.

The microstructure map in Figure 4 shows some of the key microstructures
in the UHCS dataset; the inset scatter plot shows the full t-SNE map with
the selected view indicated by the black frame. Colors indicate the primary
microconstituent labels. The image map is best viewed electronically in
its complete form, available in the supplemental materials along with maps
for additional microstructure representations. This microstructure map
was obtained by applying t-SNE to multiscale fifth block CNN features as
described in detail as mVGG5 features in [4].

The main focus of this microstructure map view is the initial pearlitic
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structure. Starting from the bottom right of the map and moving upwards, the
pearlite structure changes from high-magnification images of fine pearlite to
lower-magnification views of coarser, more complex pearlite structures. On the
left half of the map, there is a cluster of pearlitic microstructures containing
spheroidized cementite, and at the top left corner of this view there are several
micrographs with extensive Widmanstätten cementite. These microstructure
maps are useful for summarizing large bodies of characterization work collected
over a potentially long time frames in a clear and concise manner.

Figure 4: Section of a t-SNE map displaying UHCS micrographs annotated
with primary microconstituent, laid out using multiscale CNN features from
the fifth block of the VGG network (described in detail as mVGG5 features
in [4]).

The bottleneck in this process (for the relatively small UHCS dataset at
least) is the dimensionality reduction step. Because we have precomputed
the reduced-dimensionality representations these microstructure maps are
easy to generate on demand, subject to the practical constraints of sufficient
server-side resources or a client-side implementation.

4.3 Interactive metadata visualization tool

The data visualization tool2 is a Bokeh application that displays scatter
plots with reduced-dimensionality microstructure representations. A collec-

2http://uhcsdb.materials.cmu.edu/visualize
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tion of drop-down web forms enable the user to choose between available
microstructure representations, dimensionality reduction methods, and meta-
data annotations, as illustrated in Figure 5. The default view (Figure 5(a))
is a t-SNE map with marker colors indicating the primary microconstituents
in each micrograph. The drop-down forms allow the user to select alternative
metadata to display via the marker colors and relative sizes, including an-
nealing time and temperature (shown in Figure 5(b)) and the magnification.
The user can reproduce and explore all of the scatterplot figures in [4] and
its supplemental materials, as well as scroll, zoom, and export individual
plots (as shown in Figure 5(c), which focuses on the upper-right quadrant of
Figure 5(b).).

As shown in Figure 5(d), placing the mouse cursor over a scatterplot
marker will display a thumbnail image of the corresponding micrograph,
along with some relevant processing metadata. Clicking on a marker will
open an URL that triggers a microstructure query for the corresponding
micrograph record. This view is not as complete as the microstructure maps
presented in Section 4.2, but allows the user to explore relationships between
microstructure and metadata in a more interactive manner.

Currently, the (precomputed) reduced-dimensionality methods avail-
able on the UHCSDB web application include principal component anal-
ysis (PCA) [13], t-SNE [12], multidimensional scaling [MDS, shown in Fig-
ure 5(d)] [14], locally linear embedding (LLE) [15], Isomap [16], and spectral
embedding [17]. Presently, we precompute reduced-dimensionality repre-
sentations for each microstructure representation, but in principle they can
be computed on demand. Most of these dimensionality reduction methods
require only a few seconds of computation for a dataset of this size and com-
plexity, though t-SNE can require a few minutes, especially when computing
multiple independent maps. Front-end (client-side) dimensionality reduction
implementations may be useful for exploratory and collaborative deploy-
ments, compared with the precomputed dimensionality reduction workflow
we employ presently.

5 Potential applications

The UHCS microstructures and metadata can serve the materials data science
community as a source of benchmark tasks for evaluating and comparing
microstructure representations. Though the dataset is small compared to
many of the standard datasets used in the computer vision and robotics
literature, it’s size is likely representative of microstructure datasets currently
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(a) (b)

(c) (d)

Figure 5: Screenshots from the interactive data visualization tool. (a) Default
view: t-SNE map with marker colors indicating primary microconstituent.
(b) t-SNE map with marker colors indicating annealing temperature and
relative marker sizes indicating annealing time. (c) Zoomed-in view of the
map in (b). (d) Multidimensional scaling map showing time and temperature
metadata, illustrating the micrograph thumbnail tooltip.
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collected by individual researchers.
Microstructural complexity makes the UHCS dataset an interesting chal-

lenge for microstructure segmentation and representation. As in many impor-
tant microstructure systems, the relevant microstructure features (especially
spheroidized cementite in this case) vary in physical length scale as well
as in the relative length scale of the image reference frame (i.e. differing
magnification). These aspects make the UHCS dataset a useful resource for
researchers interested in developing microstructure representations that are
invariant, equivariant, or covariant to both scale and rotation. Similarly, the
UHCS dataset is a promising resource for materials data scientists to build
teaching modules for microstructure informatics techniques.

We are also currently using the microstructure dataset to explore applica-
tion of semantic segmentation techniques to complex microstructure systems,
which could support and accelerate conventional microstructure-based re-
search. For example, Hecht et al. [3] used a laborious semi-automated process
to segment the spheroidized cementite particles (e.g. in Figure 1(c), Figure
1 in [3]) to enable their analysis of the cementite coarsening kinetics. They
also manually traced branches of the proeutectoid cementite network (e.g.
in Figure 1(b), Figure 3 in [3]) and the surrounding particle-free denuded
regions to support their particle coarsening analysis. Automation of these
kinds of microstructure analytics tasks could significantly lower the cost of
gathering and analyzing statistically-meaningful quantities of microstructure
data.

Finally, the web application and exploratory analysis tools presented in
this manuscript can be repurposed and adapted for analysis of other mi-
crostructure datasets. These tools could help individual researcher groups
scale up their analysis and interpretation of microstructure data inter-
nally. Additionally, combined with emerging data curation platforms such
as Citrination[7], Materials Commons[9], and the NIST DSpace[18], these
microstructure dataset visualization tools could impact the way researchers
interact with the materials science literature, as is being done for numerical
materials properties[7, 19, 20]. What if every materials characterization paper
had an interactive microstructure and metadata supplementary publication,
instead of merely including a select few ‘representative’ micrographs? Integra-
tion of microstructure-based search and visualization tools into the materials
data infrastructure could significantly improve discoverability.
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6 Archival data accessibility

The complete set of micrographs, metadata, and web application source code
are available on the NIST repository materialsdata.nist.gov [1].

7 Software requirements

All of the software used in this project is available under permissive open
source licenses, and is listed in Table 5, along with additional required python
libraries in Table 6. Additional software and configuration may be necessary
for public deployment of the interactive data exploration application, such as
a web server (we currently use nginx and gunicorn).

Table 5: Software dependencies used in this project.

project name use
SQLite database management system
python general purpose programming
bh_tsne Reference t-SNE implementation [12]

Table 6: Python dependencies not included in the python standard library.

module name use
h5py HDF5 interface
bokeh interactive data visualizations
flask web framework
keras neural network library [21]
numpy numerical computing library
pandas data frames library
skimage image processing library [22]
seaborn statistical plotting library
sklearn machine learning library [23]
matplotlib plotting library
sqlalchemy SQLite interface

8 Conclusion

We present an ultrahigh carbon steel microstructure dataset and suite of
microstructure visualization tools. The UHCS dataset is a promising commu-
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nity resource for researchers interested in developing data-driven methods
linking microstructure with processing/properties metadata. The dataset is
also ideal for the creation of microstructure data science teaching resources
to enable workforce development. We hope the microstructure and meta-
data visualization tools we present will be integrated into the burgeoning
ecosystem of materials data repositories to increase the discoverability of
microscopy datasets. Finally, these tools may help large collaborative projects
scale up and speed up the microstructure collection, curation, and analysis
components of their work.
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